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Abstract—Acoustoelectric tomography (AET) maps tissue con-
ductivity by locally modulating its electrical impedance with an
ultrasonic wave in the presence of an electric field. The resulting
nanoVolt-level, periodic pulsed signals are often buried in ex-
treme noise levels, making traditional filtering and demodulation
methods ineffective. This paper examines the feasibility and
limitations of using lock-in demodulation to detect these signals
in environments with low signal-to-noise ratios (SNR). While
lock-in demodulation is traditionally designed to operate on
continuous sinusoidal waveforms, its application and effectiveness
to demodulate short and exponentially decaying pulsed signals
has not been previously investigated.

The paper presents a discrete model of a lock-in demodulation
scheme and verifies it experimentally with ultrasound pulses
measured in a phantom tissue and fed to a commercially available
lock-in amplifier. The model is then used in a series of simulations
to investigate the influence of model and signal parameters, such
as filter order, cut-off frequency, pulse width, and SNR, on the
demodulation scheme’s output. The results indicate that wider
wavelets and higher-order filters with a narrow band allow for
better noise rejection. The results can guide the design and use
of lock-in demodulation schemes for pulsed ultrasonic signals
and ultimately offer a more robust alternative to traditional
demodulation methods used in AET.

I. INTRODUCTION

Acoustoelectric tomography (AET) is an emerging imaging
technique that uses focused ultrasound to locally modulate
the conductivity of tissue exposed to an electric field while
measurements of the electric potential are taken at different
locations, enabling high-resolution mapping of the tissue’s
electrical properties [1]. It is based on the principle that
a focused ultrasonic wave travelling through the medium
induces microscopic periods of compression and rarefaction
at a frequency that corresponds to that of the ultrasonic wave.
These changes in volume are spatially encoded at the focal
point and alter the tissue’s conductivity within, proportionally
to the tissue’s acoustoelectric coupling constant [1], [2], [3].

When an electric current is applied to tissue in the presence
of the acoustic pressure, the induced voltage exhibits low- and
high-frequency components. The low-frequency component
matches the frequency of the applied current and corresponds
to the voltage observed in the absence of pressure. The high-
frequency component matches that of the ultrasonic wave and
arises from the acoustic modulation of the tissue conduc-
tivity. Separated from filtering, the latter provides sufficient

This research is supported by the Ontario Graduate Scholarship and the
Ontario Ministry of Colleges and Universities Early Researcher Award.

information to infer the electrical impedance of the focal
point. When the focal point is steered across the tissue, the
conductivity can be estimated at any desired point, allowing for
high-resolution mapping of the tissue’s electrical properties.
A major challenge in AET is to extract the weak (nV ) high-
frequency signal from the dominant carrier frequency buried
in background noise. This weak signal-to-noise ratio (SNR)
requires accurate filtering and signal processing to reliably
isolate and interpret the high-frequency component needed for
conductivity mapping.

Traditional narrow-band filters with an amplification stage
are generally ill-suited for demodulating such weak periodic
signals. While they can be tuned to filter out a frequency of
interest, they often introduce significant signal distortion and
delay, limiting the time-domain resolution of the transients
present in ultrasonic pulses. Furthermore, they are highly
sensitive to background noise, often resulting in unstable and
unpredictable performance in dynamic environments [4].

Other measurement schemes can be implemented using
analog circuits or digital signal processing (DSP). Analog
demodulation typically obtains the signal’s phase and mag-
nitude through in-phase and quadrature methods [5] at a
specific frequency. To detect signals at a different band, the
system needs to be replicated, increasing complexity and
hardware requirements. In contrast, DSP samples the signal at
a constant rate and performs demodulation digitally [5] with
either integer-period demodulation and non-integer-period de-
modulation methods. In the former, the required number of
samples is obtained over one or more multiples of the carrier
period, resulting in precise and undistorted measurement of the
signal’s amplitude and phase, but with limited demodulation
speed. Non-integer-period demodulation involves sampling
over a non-integer number of the carrier period, which can
introduce errors, loss of accuracy, and spectral artifacts due to
incomplete cycles and signal truncation, offering a trade-off
between speed and accuracy [5].

Rectification is one of the simplest forms of integer demod-
ulation. It takes the absolute value of the waveform before
low-passing it to extract the signal’s envelope or amplitude
[6]. While effective for single-frequency demodulation, it
is susceptible to multiple frequency components, offering
minimal rejection of signals away from the carrier. A more
robust approach, the switching method, first multiplies the
signal by a reference square wave at the carrier frequency.
The low-pass filter then averages out all components that
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do not match the carrier to zero, leaving only the DC term
produced when the carrier is multiplied by the square wave,
thereby extracting the original signal’s envelope [7]. However,
switch timing errors and limited bandwidth can introduce
phase errors, incomplete sampling, and feed-through noise,
which is more pronounced in high frequencies, such as the
range used in AET. Another method, called synchronous
sampling, limits such timing errors and incomplete sampling
by precisely aligning sampling to an integer multiple of the
carrier frequency [8]. However, it relies on precise control
of the carrier frequency and sampling clock, making it prone
to frequency drift. Quadrature demodulation methods improve
upon these techniques by capturing both the in-phase and
quadrature components of the signal, reducing the errors
seen in single-channel methods. It is also better suited for
signals with varying frequency contents and wide bandwidths
[9]. However, when the carrier or modulating frequency is
unknown or varies, or when multiple frequencies must be
analyzed concurrently, the discrete Fourier transform (DFT)
is a more suitable alternative. It maps the time-domain signal
into its frequency components, providing an accurate estimate
of the magnitude of each frequency within the signal of interest
[10], [11]. Yet, this technique can suffer from spectral leakage
when the signal does not contain an integer number of periods
within the sampling window, resulting in a widened frequency
spectrum and reduced accuracy [12]. It also lacks the time
resolution required for tracking spatially localized changes
present in AET signals.

An alternative to the above demodulation methods for
applications with extremely low SNR is lock-in amplification,
a frequency-dependent narrow-band filter capable of detection
and measurement of extremely small AC signals buried in
noise. This scheme multiples the input signal with a reference
sinusoidal signal that matches the frequency of the signal of
interest, and then passes the result through a low-pass filter,
isolating a DC output proportional to the amplitude of the
modulated signal and the reference signal [13]. This approach
rests on the principle of orthogonality of sinusoidal functions:
when two sine waves of different frequencies are multiplied
and integrated over a complete period (or low-passed), the
result is zero. The output of the filter is only non-zero if
a portion of the signal of interest matches the frequency
of the reference signal. This makes lock-in demodulation
exceptionally sensitive even in extremely noisy environments.

While a lock-in amplifier can effectively demodulate a con-
tinuous sinusoidal signal with an exceptional SNR of interest,
AET uses instead short-pulsed ultrasound waves that decay
exponentially over a temporal length typically not exceeding
a couple of microseconds. Therefore, a low-pass filter with a
typical time constant designed for optimal noise rejection can
distort the resulting pulse envelope and suppress fast signal
changes, potentially degrading both the accuracy and timing
precision needed for effective demodulation in AET [14]. This
paper investigates the feasibility and limits of using lock-in
amplification to recover such short-pulsed signals rather than
continuous sinusoids. To that end, we devise a model of a

lock-in demodulation scheme and verify it with experimental
results. The model is then used in a series of simulations
to investigate the influence of filter and signal parameters in
the amplifier’s output. The results can guide the design and
use of lock-in demodulation schemes in AET and ultimately
offer a more robust alternative to traditional demodulation
methods. While lock-in amplification has been proven as an
effective solution in low SNR environments for continuous
sinusoidal signals, its use for short-duration pulsed signals has
not been thoroughly studied and represents the contribution of
this work.

The goal of this paper is to characterize the performance
of a lock-in amplifier to demodulate pulsed signals, and it
is organized as follows. Section II models pulsed ultrasonic
signals using wavelets and presents a complete deviation of
the lock-in demodulation scheme. The model is subsequently
validated experimentally in Section III using ultrasonic signals
measured in a phantom tissue and a commercial lock-in
amplifier. Once the model is validated, it is used in Section
IV to extrapolate the results to a wider range of experimental
scenarios to study how the model parameters influence the
output of the demodulation scheme.

II. LOCK-IN DEMODULATION OF PULSED SIGNALS

A lock-in amplifier multiplies a sinusoidal signal measured
in the presence of noise by a reference signal of the same
frequency. The result is low-pass filtered, removing any high-
frequency components, and leaving a DC signal whose magni-
tude is proportional to that of the measured sinusoidal signal.
Take, for example, the case of the two multiplied cosine waves
of frequencies ω1 and ω2 and magnitudes A1 and A2:

V (t) = A1 sin (ω1t)A2 sin (ω2t)

=
A1A2

2
[cos ([ω1 − ω2]t)− cos ([ω1 + ω2]t)]. (1)

where t is time. When ω1 = ω2, the above simplifies to:

V (t) =
A1A2

2
[1− cos (2ω1t)] (2)

The result is a signal with both a DC component and one at
2ω1, i.e., at twice the reference frequency. When the signal is
low-pass filtered to remove the 2ω1 component and any higher
frequency noise, the result is A1A2/2, that is, proportional
to the magnitude of the signal of interest. In the following
subsection, we detail and extend this model to accept a pulsed
ultrasonic signal as the input.

A. Modelling an Ultrasonic Pulse

An ultrasonic pulse may be modelled as a sinusoidal carrier
wave whose amplitude is modulated by an exponentially
decaying envelope. It can be approximated by the Morlet
wavelet as:

y(t) = Aue
− t2

2σ2 cos(ωut) (3)

where ωu is the central (ultrasonic) frequency, Au = y(0)
is the peak magnitude of the pulse, and σ is the standard
deviation of its Gaussian envelope. The temporal width tw



of y(t) where its magnitude is greater than mAu, with 0 <
m < 1 representing the fraction or percentage of Au, is found
by equating the Gaussian envelope to Aum and solving for
t = tw:

Aue
− t2w

2σ2 = A0m→ tw = σ
√
2 ln(m). (4)

To construct a periodic signal of these pulses with a repetition
period of T , we sum time-shifted versions of (3) as

Y (t) =
∑
n

y(t− nT ) = Au
∑
n

e−
(t−nT )2

2σ2 cos (ωu[t− nT ])

(5)
where n ∈ Z is the number of pulses. Further, we assume that
Y (t) is observed in the presence of background noise, which
is modelled as a sum of sinusoidal components with higher
frequencies than the carrier frequency ωu as

ψ(t) = Y (t) +
∑
j

Aj cos (ωjt+ φj) (6)

where Aj is the amplitude, ωj is the angular frequency, and
φj is the phase of the jth frequency component, with ωu < ωj
assumed for simplicity.

The objective of the lock-in demodulation is to extract
the envelope magnitude of the pulse train Y (t) from the
observed mixed signal ψ(t), even when the magnitude of the
background noise is several orders of magnitude greater than
the peak magnitude Au of y(t).

B. Lock-in Demodulation

In lock-in demodulation, the measured signal ψ(t) is first
multiplied by a reference sinusoidal waveform cos(ωrt) of
frequency ωr. When the frequency of the reference waveform
matches the centre frequency of the ultrasonic signal, i.e.,
ωr = ωψ , the resulting signal produces a DC component
proportional to the magnitude of the carrier, and another
component at twice the frequency. A low-pass filter then
removes the high-frequency component, leaving only the time-
dependent DC term that approximates the envelope of the
carrier.

The mixing product Ψ(t) = ψ(t) cos(ωrt), is

Ψ(t) =

[
Y (t) +

∑
n

Aj cos (ωjt+ φj)

]
cos(ωrt) (7)

Replacing (5) in the above and expanding the multiplication
using the identity for the product of cosines gives:

Ψ(t) =
Au
2

∑
n

e−
(t−nT )2

2σ2

{
cos

[
(ωu − ωr)t− ωunT

]
+cos

[
(ωu + ωr)t− ωunT

]}
+
1

2

∑
j

Aj

{
cos

[
(ωj − ωr)t+ φj

]
+cos

[
(ωj + ωr)t+ φj

]}
.

(8)

For ωr = ωu, the above simplifies to:

Ψ(t) =
Au
2

∑
n

e−
(t−nT )2

2σ2
[
cos(ωrnT ) + cos(2ωrt− ωrnT )

]
+

1

2

∑
j

Aj

{
cos

[
(ωj − ωr)t+ φj

]
(9)

+ cos
[
(ωj + ωr)t+ φj

]}
.

To simplify the notation, the higher frequency terms will be
encompassed by the term ϕ(t) such that

Ψ(t) =
Au
2

∑
n

e−
(t−nT )2

2σ2 cos(ωrnT ) + Φ(t). (10)

where

Φ(t) =
Au
2

∑
n

e−
(t−nT )2

2σ2 cos(2ωrt− ωrnT )

+
1

2

∑
j

Aj

{
cos

[
(ωj − ωr)t+ φj

]
+ cos

[
(ωj + ωr)t+ φj

]}
(11)

The next step is to pass Ψ(t) through a low-pass filter. If
the filter’s cut-off frequency ωc satisfies ωc ≪ ωr and ωc <
|ωj − ωr|, all higher frequency terms are attenuated to near
zero (Φ(t) → 0), and the only remaining term is

Ψf (t) ≈
Au
2

∑
n

e−
(t−nT )2

2σ2 cos(ωrnT ). (12)

The above approximation indicates that the output of lock-
in amplification is proportional to the envelope of the input
ultrasonic pulse. This is easily observable when n = 0.
However, this approximation neglects the time delay and gain
introduced by the low-pass filter in the output response. In
AET, such pulses occur on the microsecond scale, and accurate
timing is crucial for image reconstruction. Therefore, the
actual time-domain response of Ψf (t) must be calculated.

C. Low-Pass Filtering

A typical implementation of a low-pass filter in a lock-in
amplifier takes the form of the following transfer function

Ψf (s)

Ψ(s)
=

1(
s
ωc

+ 1
)q (13)

where s is the Laplace variable, and q ∈ Z∗ is the filter order.
For a first-order filter, Ψf (t) can be calculated as the

solution of the following differential equation, which is the
inverse Laplace transform of (13) when q = 1, as:

1

ωc

dΨf (t)

dt
+Ψf (t) = Ψ(t). (14)

When substituting (10) into the above, the resulting equation
becomes nonhomogeneous and does not have a closed-form
solution. A discretized solution can instead be found by letting

tk = t0 + k∆t, k = 0, 1, . . . , N,



where t0 is the initial time, assumed to be zero for simplicity,
∆t is the sampling time step, and tk is the discrete time step.
Eq. (14) can be approximated as:

Ψf (tk+1)−Ψf (tk)

∆t
= ωc [Ψ(tk)−Ψf (tk)] , (15)

or simply:

Ψf (tk+1) = Ψf (tk)(1− ωc∆t) + Ψ(tk)ωc∆t (16)

from which we obtain the filtered signal as:

Ψf (tk+1) =Ψf (tk)(1− ωc∆t) (17)

+

[
Au
2

∑
n

e−
(tk−nT )2

2σ2 cos(ωrnT ) + Φ(tk)

]
ωc∆t.

If a second-order filter is used instead, the filter’s output is
the temporal solution of (13) for q = 2, satisfying:

d2Ψf (t)

dt2
+ 2ωc

dΨf (t)

dt
+ ω2

cΨf (t) = ω2
cΨ(t). (18)

In its discrete form, the solution of the above can be found as
Ψf (tk+1)− 2Ψf (tk) + Ψf (tk−1)

∆t2
+ 2ωc

Ψf (tk)−Ψf (tk−1)

∆t
+ω2

cΨf (tk) = ω2
cΨ(tk),

which can be rearranged as

Ψf (tk+1) =
(
2− 2∆tωc − ω2

c∆t
2
)
Ψf (tk)

+ (2∆tωc − 1)Ψf (tk−1) + ω2
c∆t

2Ψ(tk)
(19)

to give the filter’s output Ψf (t) in the form of

Ψf (tk+1) =
(
2− 2∆tωc − ω2

c∆t
2
)
Ψf (tk)

+ (2∆tωc − 1)Ψf (tk−1) (20)

+

[
Au
2

∑
n

e−
(tk−nT )2

2σ2 cos(ωrnT ) + Φ(t)

]
ω2
c∆t

2.

The process to find the filtered signal Ψf (s) for higher-order
filters (q > 2) follows the sample steps and will therefore be
omitted for simplicity.

Note that when the measured signal is multiplied by the ref-
erence cosine in (7), we assume the reference signal cos(ωrt)
and the cosine component of the ultrasonic centre frequency
cos(ωut) are in phase. To compensate for any phase shift,
we use quadrature demodulation by first mixing the measured
signal ψ(t) with a second reference signal shifted by 90◦:

Ψπ(t) = ψ(t) cos
(
ωrt+

π

2

)
(21)

The process from (7) to the filtering step is repeated for
this quadrature component. If the filtered version of Ψπ(t) is
Ψπf (t), we retrieve the magnitude of the phase-shifted signal
by combining the in-phase and quadrature components as:

Ψs(t) =
√
Ψf (t)2 +Ψπf (t)2. (22)

Having defined the output of the lock-in demodulation
scheme, we must now define metrics to quantify the quality
of the output signal and evaluate the influence of the lock-in
amplifier’s tunable parameters on the output.

Fig. 1: Experimental setup for model validation. Transducer 1
emits a pulsed ultrasound waveform through an agar phantom
at a repetition frequency of 30Hz and centre frequency of 2.25
MHz. The waveform measured by transducer 2 is input into
the lock-in amplifier.

D. Output Signal Quantification

The input wavelet function has three main parameters: am-
plitude Au, pulse width σ, and frequency ωu. By varying these
parameters, a family of different wavelets can be generated and
tested. To these wavelets, we add variable amounts of noise
by simulating Φ(t) in (11) as additive white Gaussian noise,
thereby creating input signals with different SNRs.

The tunable parameters of the lock-in amplifier are its filter’s
cut-off frequency ωc and order q.

To evaluate the influence of these parameters in the demodu-
lation of the pulsed signal, the following metrics are defined to
quantify the quality of the output signal Ψf (t) in comparison
to the reference input ψ(t):

1) The amplitude of the demodulated signal;
2) The time delay τ elapsed between the peak of the output

signal with respect to the peak of the input wavelet;
3) The SNR of the output signal.

III. EXPERIMENTAL MODEL VALIDATION

To validate the proposed model, we use the experimental
setup shown in Fig. 1. A 128-element phased array transducer
(P4-1 from Philips Healthcare, Andover, MA, USA), placed
in contact with a gel phantom made of 4% agar and distilled
water, is driven at 2.25 MHz by an ultrasound system (Vantage
LE 64 from Verasonics, Kirkland, WA, USA). The probe emits
single pulses of ultrasound waves roughly 10 µs in duration,
at a repetition rate of 30 Hz. On the opposite side of the
phantom, we place a single-element transducer to measure the
resulting waveform. The single-element transducer is directly
connected to the input of a 5 MHz lock-in amplifier (MLFI
from Zurich Instruments, Zurich, Switzerland). The distance
between the two transducers is 60 mm.

The lock-in amplifier’s reference frequency is set to ωr =
2.25 MHz with a third-order filter and a −3 dB cutoff
frequency of ωc = 241 kHz. The signal measured by the



Measured ultrasound signal
Experimental result (lock-in)
Modelled result (3rd order filter)

Fig. 2: Measured single ultrasonic pulse (blue), experimentally
demodulated signal (orange), and model-estimated demodu-
lated signal (dashed purple) using a third-order filter (top
panel). The bottom panel shows the absolute error between
the model and the lock-in amplifier’s output.

single-element transducer is processed in the lock-in amplifier
and also input into the model described earlier, which is tuned
with the same parameters as the lock-in amplifier.

Fig. (2) shows the raw ultrasonic pulse detected by the
receiving transducer along with the demodulated signals calcu-
lated by the lock-in amplifier and through the proposed model.
The results show an overlap of the experimental and modelled
signals. Noting that the lock-in amplifier introduces a 1 µs
time delay due to internal processing, these signals are time-
shifted in the plot by the same amount. The spikes in the error
plot are a result of the discretization of the output signal and
the sampling resolution of the lock-in amplifier.

Having validated the accuracy of the proposed model,
the model can now be used to extrapolate the experimental
conditions to different combinations of input signals and
demodulation parameters.

IV. SIMULATION RESULTS

First, we evaluate the influence of the duration of the
wavelet pulse (i.e., the Gaussian envelope width σ) on the
lock-in amplifier’s output. The left side of Fig. 3 shows 3
wavelets simulated with a centre frequency of ωu = 1 kHz
and different Gaussian envelopes σ = 0.01, σ = 0.005, and
σ = 0.001, resulting in different pulse widths and numbers
of cycles. The purple line represents the noise-free wavelet,
while the blue signals have an added white Gaussian noise.
The right side of the figure shows the respective demodulated
lock-in-demodulated output for a third-order filter and a cut-
off frequency of 50 Hz. The results indicate that the magnitude
of the output increases with the wavelet width, and wider
wavelets offer better noise rejection.

Next, we evaluate the influence of the cut-off frequency and
the filter order in the amplifier’s output. The input wavelet is
simulated with a centre frequency of 1 kHz and a Gaussian
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Fig. 3: Effect of wavelet width (Gaussian envelope σ) on the
output signal for wavelets with no noise (purple) and with
a 0 dB added SNR (blue). The input wavelets in the left 3
panels have a frequency of 1 kHz. The corresponding lock-in
amplifier output on the right is calculated with a third-order
filter with a cut-off frequency of 50 Hz.

envelope of σ = 0.001. Fig. 4 (a) shows the time elapsed
between the peak of the input wavelet and the peak of the
demodulated signal for different filter orders as a function of
the cut-off frequency, while Fig. 4 (b) shows the resulting
peak magnitude of the output signal. These results indicate
that: 1) the higher the filter order, the higher the time delay,
2) the higher the filter order, the lower the peak magnitude of
the output signal, and 3) the lower the cut-off frequency, the
higher the time delay and the lower the peak magnitude for a
given filter order. In Fig. 4(c), we added three different levels
of noise to the input signal (10 dB, 0 dB, and -10 dB SNR) and
evaluated the resulting SNR of the output. The results show
that more aggressive filters improve the SNR of the output,
at the cost of lower peak magnitude and higher time delay. A
lower-order filter with a larger bandwidth has the least time
delay, yet it may include spurious frequencies.

Finally, we evaluate the influence of the Gaussian envelope
σ on the output SNR for 3 different input SNRs using the same
wavelet and filter parameters described earlier. Fig. 5 shows
that wider wavelets increase the output SNR. This is because
wider wavelets allow the low-pass filter to average the signal
over a longer time window with more frequency components,
improving rejection of broadband noise components are do not
match the reference frequency.

V. CONCLUSION

In this paper, we model and evaluate the performance of
a lock-in amplifier in demodulating pulsed signals across
various experimental and simulation conditions. The model
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Fig. 5: Effect of wavelet width (Gaussian envelope σ) on the
output SNR for wavelets with 3 different SNR as the model
input. The lock-in amplifier output assumes a third-order filter
with a cut-off frequency of 50 Hz.

is first verified experimentally with pulsed ultrasound signals
measured in a phantom tissue, and then used to extrapolate
the operating conditions in simulations using a wider range
of model and input wavelet parameters to determine optimal
parameters for signal demodulation.

The results show that:

• Wider wavelets allow more effective noise averaging,
resulting in higher output magnitude and better noise
rejection;

• Higher order filters and low cut-off frequencies increase
time delay and reduce output magnitude, but improve
output SNR;

• Output SNR improves for all tested input SNRs as
the wavelet width increases and the cut-off frequency
decreases.

While the input signal must have sufficient frequency com-
ponents to be detected, the filter parameters must strike a
balance between order and bandwidth to capture the signal
without letting unwanted noise through while minimizing time
delay. These findings can guide the development of efficient
experimental setups to measure the acoustoelectric effect in
challenging experimental conditions.
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